Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0301037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547208

RESUMEN

BACKGROUND: The favorable health-promoting adaptations to exercise result from cumulative responses to individual bouts of physical activity. Older adults often exhibit anabolic resistance; a phenomenon whereby the anabolic responses to exercise and nutrition are attenuated in skeletal muscle. The mechanisms contributing to age-related anabolic resistance are emerging, but our understanding of how chronological age influences responsiveness to exercise is incomplete. The objective was to determine the effects of healthy aging on peripheral blood metabolomic response to a single bout of resistance exercise and whether any metabolites in circulation are predictive of anabolic response in skeletal muscle. METHODS: Thirty young (20-35 years) and 49 older (65-85 years) men and women were studied in a cross-sectional manner. Participants completed a single bout of resistance exercise consisting of eight sets of 10 repetitions of unilateral knee extension at 70% of one-repetition maximum. Blood samples were collected before exercise, immediately post exercise, and 30-, 90-, and 180-minutes into recovery. Proton nuclear magnetic resonance spectroscopy was used to profile circulating metabolites at all timepoints. Serial muscle biopsies were collected for measuring muscle protein synthesis rates. RESULTS: Our analysis revealed that one bout of resistance exercise elicits significant changes in 26 of 33 measured plasma metabolites, reflecting alterations in several biological processes. Furthermore, 12 metabolites demonstrated significant interactions between exercise and age, including organic acids, amino acids, ketones, and keto-acids, which exhibited distinct responses to exercise in young and older adults. Pre-exercise histidine and sarcosine were negatively associated with muscle protein synthesis, as was the pre/post-exercise fold change in plasma histidine. CONCLUSIONS: This study demonstrates that while many exercise-responsive metabolites change similarly in young and older adults, several demonstrate age-dependent changes even in the absence of evidence of sarcopenia or frailty. TRIAL REGISTRATION: Clinical trial registry: ClinicalTrials.gov NCT03350906.


Asunto(s)
Entrenamiento de Fuerza , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Estudios Transversales , Histidina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Espectroscopía de Protones por Resonancia Magnética , Adulto Joven , Adulto
2.
Aging Cell ; 23(4): e14097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38297807

RESUMEN

The loss of skeletal muscle mass during aging is a significant health concern linked to adverse outcomes in older individuals. Understanding the molecular basis of age-related muscle loss is crucial for developing strategies to combat this debilitating condition. Long noncoding RNAs (lncRNAs) are a largely uncharacterized class of biomolecules that have been implicated in cellular homeostasis and dysfunction across a many tissues and cell types. To identify lncRNAs that might contribute to skeletal muscle aging, we screened for lncRNAs whose expression was altered in vastus lateralis muscle from older compared to young adults. We identified FRAIL1 as an aging-induced lncRNA with high abundance in human skeletal muscle. In healthy young and older adults, skeletal muscle FRAIL1 was increased with age in conjunction with lower muscle function. Forced expression of FRAIL1 in mouse tibialis anterior muscle elicits a dose-dependent reduction in skeletal muscle fiber size that is independent of changes in muscle fiber type. Furthermore, this reduction in muscle size is dependent on an intact region of FRAIL1 that is highly conserved across non-human primates. Unbiased transcriptional and proteomic profiling of the effects of FRAIL1 expression in mouse skeletal muscle revealed widespread changes in mRNA and protein abundance that recapitulate age-related changes in pathways and processes that are known to be altered in aging skeletal muscle. Taken together, these findings shed light on the intricate molecular mechanisms underlying skeletal muscle aging and implicate FRAIL1 in age-related skeletal muscle phenotypes.


Asunto(s)
ARN Largo no Codificante , Humanos , Animales , Ratones , Anciano , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteómica , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Envejecimiento/metabolismo
3.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37815864

RESUMEN

Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss. These cellular changes were at least partly mediated by MAP kinase kinase kinase 4, a protein kinase that is directly activated by GADD45A. By inducing these changes, GADD45A decreased the mass of muscles that are enriched in glycolytic fibers, and it impaired strength, specific force, and endurance exercise capacity. Furthermore, as predicted by data from mouse models, we found that GADD45A expression in skeletal muscle was associated with muscle weakness in humans. Collectively, these findings identify GADD45A as a mediator of mitochondrial loss, atrophy, and weakness in mouse skeletal muscle and a potential target for muscle weakness in humans.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Atrofia Muscular , Animales , Humanos , Ratones , Envejecimiento , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitocondrias Musculares/metabolismo , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patología
4.
Exp Gerontol ; 177: 112177, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37085128

RESUMEN

Aging is associated with profound alterations in skeletal muscle, including loss of muscle mass and function, local inflammation, altered mitochondrial physiology, and attenuated anabolic responses to exercise termed anabolic resistance. "Inflammaging," the chronic, low-grade inflammation associated with aging, may contribute to many of the age-related derangements in skeletal muscle, including its ability to respond to exercise and nutritional stimuli. Inflammation and exercise are closely intertwined in numerous ways. A single bout of muscle-damaging exercise stimulates an acute inflammatory response in the skeletal muscle that is essential for muscle repair and regeneration; however, the chronic systemic and local inflammation associated with aging may impair acute inflammatory and anabolic responses to exercise. In contrast, exercise training is anti-inflammatory, targeting many of the potential root causes of inflammaging. In this review, we discuss the interplay between inflammation and exercise in aging and highlight potential therapeutic targets for improving adaptive responses to exercise in older adults.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Anciano , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Envejecimiento/fisiología , Inflamación , Antiinflamatorios
6.
Physiol Rep ; 10(24): e15539, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541258

RESUMEN

Obesity is associated with several skeletal muscle impairments which can be improved through an aerobic exercise prescription. The possibility that exercise responsiveness is diminished in people with obesity has been suggested but not well-studied. The purpose of this study was to investigate how obesity influences acute exercise responsiveness in skeletal muscle and circulating amino metabolites. Non-obese (NO; n = 19; 10F/9M; BMI = 25.1 ± 2.8 kg/m2 ) and Obese (O; n = 21; 14F/7M; BMI = 37.3 ± 4.6 kg/m2 ) adults performed 30 min of single-leg cycling at 70% of VO2 peak. 13 C6 -Phenylalanine was administered intravenously for muscle protein synthesis measurements. Serial muscle biopsies (vastus lateralis) were collected before exercise and 3.5- and 6.5-h post-exercise to measure protein synthesis and gene expression. Targeted plasma metabolomics was used to quantitate amino metabolites before and 30 and 90 min after exercise. The exercise-induced fold change in mixed muscle protein synthesis trended (p = 0.058) higher in NO (1.28 ± 0.54-fold) compared to O (0.95 ± 0.42-fold) and was inversely related to BMI (R2  = 0.140, p = 0.027). RNA sequencing revealed 331 and 280 genes that were differentially expressed after exercise in NO and O, respectively. Gene set enrichment analysis showed O had six blunted pathways related to metabolism, cell to cell communication, and protein turnover after exercise. The circulating amine response further highlighted dysregulations related to protein synthesis and metabolism in adults with obesity at the basal state and in response to the exercise bout. Collectively, these data highlight several unique pathways in individuals with obesity that resulted in a modestly blunted exercise response.


Asunto(s)
Pierna , Músculo Esquelético , Adulto , Humanos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Músculo Cuádriceps/metabolismo , Masculino , Femenino
7.
Nutrients ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36079794

RESUMEN

Skeletal muscle is critical for maintaining mobility, independence, and metabolic health in older adults. However, a common feature of aging is the progressive loss of skeletal muscle mass and function, which is often accompanied by mitochondrial impairments, oxidative stress, and insulin resistance. Exercise improves muscle strength, mitochondrial health, and cardiorespiratory fitness, but older adults often exhibit attenuated anabolic responses to acute exercise. Chronic inflammation associated with aging may contribute to this "anabolic resistance" and therapeutic interventions that target inflammation may improve exercise responsiveness. To this end, we conducted a randomized controlled trial to determine the effect of 6 months of dietary omega-3 polyunsaturated fatty acids (n3-PUFA) supplementation on skeletal muscle function (mass, strength), mitochondrial physiology (respiration, ATP production, ROS generation), and acute exercise responsiveness at the level of the muscle (fractional synthesis rate) and the whole-body (amino acid kinetics) in healthy older adults. When compared with a corn oil placebo (n = 33; 71.5 ± 4.8 years), older adults treated with 4 g/day n3-PUFA (n = 30; 71.4 ± 4.5 years) exhibited modest but significant increases in muscle strength (3.1 ± 14.7% increase in placebo vs. 7.5 ± 14.1% increase in n3-PUFA; p = 0.039). These improvements in muscle strength with n3-PUFA supplementation occurred in the absence of any effects on mitochondrial function and a minor attenuation of the acute response to exercise compared to placebo. Together, these data suggest modest benefits of dietary n3-PUFAs to muscle function in healthy older adults. Future studies may elucidate whether n3-PUFA supplementation improves the exercise response in elderly individuals with co-morbidities, such as chronic inflammatory disease or sarcopenia.


Asunto(s)
Ácidos Grasos Omega-3 , Anciano , Suplementos Dietéticos , Ejercicio Físico , Humanos , Inflamación/metabolismo , Fuerza Muscular , Músculo Esquelético/metabolismo
8.
Obesity (Silver Spring) ; 30(5): 1091-1104, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35470975

RESUMEN

OBJECTIVE: The health benefits of exercise are well documented, but several exercise-response parameters are attenuated in individuals with obesity. The goal of this pilot study was to identify molecular mechanisms that may influence exercise response with obesity. METHODS: A multi-omics comparison of the transcriptome, proteome, and phosphoproteome in muscle from a preliminary cohort of lean individuals (n = 4) and individuals with obesity (n = 4) was performed, before and after a single bout of 30 minutes of unilateral cycling at 70% maximal oxygen uptake (VO2 peak). Mass spectrometry and RNA sequencing were used to interrogate the proteome, phosphoproteome, and transcriptome from muscle biopsy tissue. RESULTS: The main findings are that individuals with obesity exhibited transcriptional and proteomic signatures consistent with reduced mitochondrial function, protein synthesis, and glycogen synthesis. Furthermore, individuals with obesity demonstrated markedly different transcriptional, proteomic, and phosphoproteomic responses to exercise, particularly biosynthetic pathways of glycogen synthesis and protein synthesis. Casein kinase II subunit alpha and glycogen synthase kinase-3ß signaling was identified as exercise-response pathways that were notably altered by obesity. CONCLUSIONS: Opportunities to enhance exercise responsiveness by targeting specific molecular pathways that are disrupted in skeletal muscle from individuals with obesity await a better understanding of the precise molecular mechanisms that may limit exercise-response pathways in obesity.


Asunto(s)
Proteoma , Proteómica , Glucógeno/metabolismo , Humanos , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Proyectos Piloto , Proteoma/metabolismo
9.
J Nutr ; 152(7): 1675-1689, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35389487

RESUMEN

BACKGROUND: Omega-3 (n-3) PUFAs are recognized for triglyceride-lowering effects in people with dyslipidemia, but it remains unclear if n-3-PUFA intake influences lipoprotein profiles in older adults without hypertriglyceridemia. OBJECTIVES: The objective was to determine the effect of n-3-PUFA supplementation on plasma lipoprotein subfractions in healthy older men and women in the absence of cardiovascular disease (CVD) or hypertriglyceridemia. This was a secondary analysis and considered exploratory. METHODS: Thirty young (20-35 y old) and 54 older (65-85 y old) men and women were enrolled in the study. Fasting plasma samples were collected. After baseline sample collection, 44 older adults were randomly assigned to receive either n-3-PUFA ethyl esters (3.9 g/d) or placebo (corn oil) for 6 mo. Pre- and postintervention plasma samples were used for quantitative lipoprotein subclass analysis using high-resolution proton NMR spectroscopy. RESULTS: The number of large, least-dense LDL particles decreased 17%-18% with n-3 PUFAs compared with placebo (<1% change; P < 0.01). The number of small, dense LDL particles increased 26%-44% with n-3 PUFAs compared with placebo (∼11% decrease; P < 0.01). The cholesterol content of large HDL particles increased by 32% with n-3 PUFAs and by 2% in placebo (P < 0.01). The cholesterol content of small HDL particles decreased by 23% with n-3 PUFAs and by 2% in placebo (P < 0.01). CONCLUSIONS: Despite increasing abundance of small, dense LDL particles that are associated with CVD risk, n-3 PUFAs reduced total triglycerides, maintained HDL, reduced systolic blood pressure, and shifted the HDL particle distribution toward a favorable cardioprotective profile in healthy older adults without dyslipidemia. This study suggests potential benefits of n-3-PUFA supplementation to lipoprotein profiles in healthy older adults without dyslipidemia, which should be considered when weighing the potential health benefits against the cost and ecological impact of widespread use of n-3-PUFA supplements.This trial was registered at clinicaltrials.gov as NCT03350906.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3 , Lipoproteínas , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/prevención & control , Colesterol , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Humanos , Hipertrigliceridemia , Lipoproteínas/sangre , Masculino , Triglicéridos , Adulto Joven
10.
J Appl Physiol (1985) ; 132(2): 388-401, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941442

RESUMEN

Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.


Asunto(s)
Neoplasias , Calidad de Vida , Humanos , Mitocondrias , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Pérdida de Peso
11.
Am J Physiol Endocrinol Metab ; 321(1): E105-E121, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33998291

RESUMEN

Obesity is accompanied by numerous systemic and tissue-specific derangements, including systemic inflammation, insulin resistance, and mitochondrial abnormalities in skeletal muscle. Despite growing recognition that adipose tissue dysfunction plays a role in obesity-related disorders, the relationship between adipose tissue inflammation and other pathological features of obesity is not well-understood. We assessed macrophage populations and measured the expression of inflammatory cytokines in abdominal adipose tissue biopsies in 39 nondiabetic adults across a range of body mass indexes (BMI 20.5-45.8 kg/m2). Skeletal muscle biopsies were used to evaluate mitochondrial respiratory capacity, ATP production capacity, coupling, and reactive oxygen species production. Insulin sensitivity (SI) and ß cell responsivity were determined from test meal postprandial glucose, insulin, c-peptide, and triglyceride kinetics. We examined the relationships between adipose tissue inflammatory markers, systemic inflammatory markers, SI, and skeletal muscle mitochondrial physiology. BMI was associated with increased adipose tissue and systemic inflammation, reduced SI, and reduced skeletal muscle mitochondrial oxidative capacity. Adipose-resident macrophage numbers were positively associated with circulating inflammatory markers, including tumor necrosis factor-α (TNFα) and C-reactive protein (CRP). Local adipose tissue inflammation and circulating concentrations of TNFα and CRP were negatively associated with SI, and circulating concentrations of TNFα and CRP were also negatively associated with skeletal muscle oxidative capacity. These results demonstrate that obese humans exhibit increased adipose tissue inflammation concurrently with increased systemic inflammation, reduced insulin sensitivity, and reduced muscle oxidative capacity and suggest that adipose tissue and systemic inflammation may drive obesity-associated metabolic derangements.NEW AND NOTEWORTHY Adipose inflammation is proposed to be at the nexus of the systemic inflammation and metabolic derangements associated with obesity. The present study provides evidence to support adipose inflammation as a central feature of the pathophysiology of obesity. Adipose inflammation is associated with systemic and peripheral metabolic derangements, including increased systemic inflammation, reduced insulin sensitivity, and reduced skeletal muscle mitochondrial respiration.


Asunto(s)
Grasa Abdominal/patología , Inflamación/patología , Resistencia a la Insulina , Macrófagos/patología , Obesidad/patología , Grasa Abdominal/química , Grasa Abdominal/metabolismo , Adulto , Biomarcadores/análisis , Índice de Masa Corporal , Proteína C-Reactiva/análisis , Recuento de Células , Citocinas/análisis , Femenino , Expresión Génica , Humanos , Inflamación/genética , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Obesidad/fisiopatología , Consumo de Oxígeno , Factor de Necrosis Tumoral alfa/sangre
12.
J Physiol ; 599(14): 3581-3592, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34032280

RESUMEN

KEY POINTS: Healthy older adults exhibit lower cardiorespiratory fitness ( V̇O2peak ) than young in the absence of any age-related difference in skeletal muscle mitochondrial capacity, suggesting central haemodynamics plays a larger role in age-related declines in V̇O2peak . Total physical activity did not differ by age, but moderate-to-vigorous physical activity was lower in older compared to young adults. Moderate-to-vigorous physical activity is associated with V̇O2peak and muscle oxidative capacity, but physical inactivity cannot entirely explain the age-related reduction in V̇O2peak . ABSTRACT: Declining fitness ( V̇O2peak ) is a hallmark of ageing and believed to arise from decreased oxygen delivery and reduced muscle oxidative capacity. Physical activity is a modifiable lifestyle factor that is critical when evaluating the effects of age on parameters of fitness and energy metabolism. The objective was to evaluate the effects of age and sex on V̇O2peak , muscle mitochondrial physiology, and physical activity in young and older adults. An additional objective was to assess the contribution of skeletal muscle oxidative capacity to age-related reductions in V̇O2peak and determine if age-related variation in V̇O2peak and muscle oxidative capacity could be explained on the basis of physical activity levels. In 23 young and 52 older men and women measurements were made of V̇O2peak , mitochondrial physiology in permeabilized muscle fibres, and free-living physical activity by accelerometry. Regression analyses were used to evaluate associations between age and V̇O2peak , mitochondrial function, and physical activity. Significant age-related reductions were observed for V̇O2peak (P < 0.001), but not muscle mitochondrial capacity. Total daily step counts did not decrease with age, but older adults showed lower moderate-to-vigorous physical activity, which was associated with V̇O2peak (R2  = 0.323, P < 0.001) and muscle oxidative capacity (R2  = 0.086, P = 0.011). After adjusting for sex and physical activity, age was negatively associated with V̇O2peak but not muscle oxidative capacity. Healthy older adults exhibit lower V̇O2peak but preserved mitochondrial capacity compared to young. Physical activity, particularly moderate-to-vigorous, is a key factor in observed age-related changes in fitness and muscle oxidative capacity, but cannot entirely explain the age-related reduction in V̇O2peak .


Asunto(s)
Capacidad Cardiovascular , Anciano , Envejecimiento , Ejercicio Físico , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Estrés Oxidativo , Consumo de Oxígeno , Aptitud Física , Adulto Joven
13.
Eur J Appl Physiol ; 121(5): 1499-1511, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33646423

RESUMEN

PURPOSE: Habitual endurance exercise results in increased erythropoiesis, which is primarily controlled by erythropoietin (EPO), yet studies demonstrating upregulation of EPO via a single bout of endurance exercise have been equivocal. This study compares the acute EPO response to 30 min of high versus 90 min of moderate-intensity endurance exercise and whether that response can be upregulated via selective adrenergic receptor blockade. METHODS: Using a counterbalanced, cross-over design, fifteen participants (age 28 ± 8) completed two bouts of running (30-min, high intensity vs 90-min, moderate intensity) matched for overall training stress. A separate cohort of fourteen participants (age 31 ± 6) completed three bouts of 30-min high-intensity cycling after ingesting the preferential ß1-adrenergic receptor (AR) antagonist bisoprolol, the non-preferential ß1 + ß2 antagonist nadolol or placebo. Venous blood was collected before, during, and after exercise, and serum EPO levels were determined by ELISA. RESULTS: No detectable EPO response was observed during or after high intensity running, however, in the moderate-intensity trial EPO was significantly elevated at both during-exercise timepoints (+ 6.8% ± 2.3% at 15 min and + 8.7% ± 2.2% at 60 min). No significant change in EPO was observed post-cycling or between the trials involving ßAR blockade. CONCLUSION: Neither training mode (running or cycling), nor beta-blockade significantly influenced the EPO response to 30 min of high-intensity exercise, however, 90 min of moderate-intensity running elevated EPO during exercise, returning to baseline immediately post-exercise. Identifying the optimal mode, duration and intensity required to evoke an EPO response to exercise may help tailor exercise prescriptions designed to maximize EPO response for both performance and clinical applications.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas Adrenérgicos beta/farmacología , Bisoprolol/farmacología , Eritropoyetina/metabolismo , Nadolol/farmacología , Resistencia Física/fisiología , Adulto , Ciclismo/fisiología , Estudios Cruzados , Femenino , Humanos , Masculino , Carrera/fisiología , Regulación hacia Arriba
14.
Cell Stress Chaperones ; 25(6): 993-1012, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32779001

RESUMEN

The adoptive transfer of donor-derived virus-specific T cells (VSTs) is an effective treatment for infections following allogeneic hematopoietic cell transplantation. Acute exercise mobilizes effector lymphocytes and VSTs to the circulation and augments the ex vivo manufacture of VSTs. This study determined if ß2 adrenergic receptor (AR) signaling precipitated the VST response to acute exercise. Healthy participants (n = 12) completed 30 min of steady-state cycling exercise after ingesting a placebo, a ß1 + 2 AR antagonist (nadolol) or a ß1 AR antagonist (bisoprolol). Circulating VSTs to cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (AdV) antigens were enumerated before and after exercise, and peripheral blood mononuclear cells were cultured with viral peptides for 8 days to expand multi-VSTs. Compared with placebo, nadolol blunted the exercise-induced mobilization of CMV-VSTs (Δ VSTs/100,000 CD3+ T cells = 93 ± 104 vs. 22 ± 91 for placebo and nadolol, respectively; p = 0.036), while bisoprolol did not, despite both drugs evoking similar reductions in exercising heart rate and blood pressure. Circulating AdV and EBV VSTs (VSTs/mL blood) only increased after exercise with placebo. Although not significant, nadolol partially mitigated exercise-induced increases in multi-VST expansion, particularly in participants that demonstrated an exercise-induced increase in VST expansion. We conclude that exercise-induced enhancements in VST mobilization and expansion are at least partially ß2 AR mediated, thus highlighting a role for the ß2 AR in targeted therapy for the augmentation of VST immune cell therapeutics in the allogeneic adoptive transfer setting. Moreover, long-term regular exercise may provide additional viral protection in the host through frequent ß2 AR-dependent mobilization and redistribution of VSTs cumulated with each bout of exercise.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Antivirales/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos , Ejercicio Físico , Linfocitos T/inmunología , Virus/inmunología , Adulto , Presión Sanguínea/efectos de los fármacos , Catecolaminas/sangre , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hidrocortisona/sangre , Ácido Láctico/sangre , Masculino , Péptidos/farmacología , Fenotipo , Receptores Adrenérgicos beta/metabolismo , Especificidad de la Especie , Linfocitos T/efectos de los fármacos , Adulto Joven
15.
Life Sci Space Res (Amst) ; 25: 119-128, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32414485

RESUMEN

BACKGROUND: On long-duration spaceflight, most astronauts experience persistent immune dysregulation and the reactivation of latent herpesviruses, including varicella zoster virus (VZV). To understand the clinical risk of these perturbations to astronauts, we paralleled the immunology and virology work-up of astronauts to otherwise healthy terrestrial persons with acute herpes zoster. METHODS: Blood samples from 42 zoster patients - confirmed positive by PCR for VZV DNA in saliva (range from 100 to >285 million copies/mL) were analyzed for peripheral leukocyte distribution, T cell function, and plasma cytokine profiles via multi-parametric flow cytometry and multiplex bead-based immune-array assays. Patient findings were compared to normal value ranges specific for each assay that were defined in-house previously from healthy adult test subjects. RESULTS: Compared to the healthy adult ranges, the zoster patients possess (1) a higher proportion of constitutively activated T-cells, (2) a T-cell population skewed towards a more experienced maturation state, (3) depressed general T-cell function, and (4) a higher concentration of 20 of 22 measured plasma cytokines. DISCUSSION: The pattern of immune dysregulation in zoster patients is similar to that of astronauts during spaceflight who shed VZV DNA in their saliva. Because future deep space exploration missions will be of an unprecedented duration, prolonged immune depression and chronic viral reactivation threaten to manifest overt disease in exploration class astronauts.


Asunto(s)
Citocinas/sangre , Herpes Zóster/inmunología , Herpesvirus Humano 3/fisiología , Linfocitos T/inmunología , Adulto , Anciano , Astronautas , ADN Viral/análisis , Femenino , Herpes Zóster/virología , Herpesvirus Humano 3/inmunología , Herpesvirus Humano 3/aislamiento & purificación , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Saliva/virología
16.
J Biol Chem ; 295(51): 17441-17459, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453990

RESUMEN

Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week-old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.


Asunto(s)
Caquexia/metabolismo , Proteínas Musculares/biosíntesis , Neoplasias/complicaciones , omega-N-Metilarginina/metabolismo , Animales , Arginina/análogos & derivados , Caquexia/etiología , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo
17.
J Appl Physiol (1985) ; 128(2): 264-275, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751178

RESUMEN

As the international space community plans for manned missions to Mars, spaceflight-associated immune dysregulation has been identified as a potential risk to the health and safety of the flight crew. There is a need to determine whether salivary antimicrobial proteins, which act as a first line of innate immune defense against multiple pathogens, are altered in response to long-duration (>6 mo) missions. We collected 7 consecutive days of whole and sublingual saliva samples from eight International Space Station (ISS) crewmembers and seven ground-based control subjects at nine mission time points, ~180 and ~60 days before launch (L-180/L-60), on orbit at flight days ~10 and ~90 (FD10/FD90) and ~1 day before return (R-1), and at R+0, R+18, R+33, and R+66 days after returning to Earth. We found that salivary secretory (s)IgA, lysozyme, LL-37, and the cortisol-to-dehydroepiandrosterone ratio were elevated in the ISS crew before (L-180) and during (FD10/FD90) the mission. "Rookie" crewmembers embarking on their first spaceflight mission had lower levels of salivary sIgA but increased levels of α-amylase, lysozyme, and LL-37 during and after the mission compared with the "veteran" crew who had previously flown. Latent herpesvirus reactivation was distinct to the ~6-mo mission crewmembers who performed extravehicular activity ("spacewalks"). Crewmembers who shed at least one latent virus had higher cortisol levels than those who did not shed. We conclude that long-duration spaceflight alters the concentration and/or secretion of several antimicrobial proteins in saliva, some of which are related to crewmember flight experience, biomarkers of stress, and latent viral reactivation.NEW & NOTEWORTHY Spaceflight-associated immune dysregulation may jeopardize future exploration-class missions. Salivary antimicrobial proteins act as a first line of innate immune defense. We report here that several of these proteins are elevated in astronauts during an International Space Station mission, particularly in those embarking on their first space voyage. Astronauts who shed a latent herpesvirus also had higher concentrations of salivary cortisol compared with those who did not shed. Stress-relieving countermeasures are needed to preserve immunity and prevent viral reactivation during prolonged voyages into deep space.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/análisis , Saliva/química , Vuelo Espacial , Estrés Fisiológico , Adulto , Astronautas , Biomarcadores/análisis , Femenino , Infecciones por Herpesviridae , Humanos , Hidrocortisona , Inmunoglobulina A Secretora , Masculino , Persona de Mediana Edad , Muramidasa , Factores de Tiempo , Activación Viral , Latencia del Virus , Esparcimiento de Virus , alfa-Amilasas , Catelicidinas
18.
Am J Physiol Endocrinol Metab ; 317(3): E460-E472, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31265326

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert numerous beneficial biological effects and attenuate diet-induced insulin resistance in rodent models. In the present study, the independent, tissue-specific effects of two nutritionally relevant n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were characterized in the context of a high-fat diet (HFD). EPA and DHA supplementation (3.2% of total fat) in 6-mo-old male C57BL/6 mice fed an HFD (60% fat) partially mitigated reductions in insulin sensitivity. At 5 wk, the area above the curve below baseline glucose following an intraperitoneal insulin tolerance test was 54.5% lower in HFD than control, whereas HFD + EPA and HFD + DHA showed 27.6% and 17.1% reductions, respectively. At 10 wk, HFD increased mitochondrial oxidative capacity supported by lipid and carbohydrate-based substrates in both liver and skeletal muscle (P < 0.05), with little effect of EPA or DHA supplementation. Whole genome transcriptomic analyses revealed HFD-induced transcriptional changes indicative of inflammation and fibrosis in both liver and muscle. Gene set enrichment analyses indicated a downregulation of transcripts associated with extracellular matrix in muscle (family-wise error rate P < 0.01) and liver (P = 0.04) and in transcripts associated with inflammation in muscle (P = 0.03) in HFD + DHA compared with HFD alone. In contrast, EPA appeared to potentiate some proinflammatory effects of the HFD. In the skeletal muscle, DHA increased the expression of stress-responsive genes, whereas EPA upregulated the expression of transcripts related to cell cycle. Therefore, although both EPA and DHA supplementation during HFD partially preserve insulin signaling, they modulate distinct processes, highlighting their unique biological effects in the context of obesity.


Asunto(s)
Dieta Alta en Grasa , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Fibrosis , Prueba de Tolerancia a la Glucosa , Inflamación/genética , Inflamación/prevención & control , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo
19.
J Appl Physiol (1985) ; 126(4): 842-853, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382809

RESUMEN

Maintaining astronaut health during space travel is paramount for further human exploration of the solar system beyond Earth's orbit. Of concern are potential dysregulations in immunity, which could increase the likelihood of cancer and latent viral reactivation. Natural killer (NK) cells are critical effectors of the innate immune system, and their function and phenotype are important to immunosurveillance of nascent tumors and latent viral infections. We compared changes in NK cell phenotype and function in eight crew members who completed an ~6-mo mission to the International Space Station (ISS) with healthy controls who remained on Earth. Assessments were made before (180 and 60 days before launch), during [flight day + 90 days (FD+90) and 1 day before return (R-1)], and after the mission (at R+0, R+18, R+33, and R+66). These samples, plus an additional in-flight sample (FD+180), were collected from a crew member who spent 340 days (~1 yr) on the ISS. NK cell cytotoxic activity (NKCA) against K562 leukemia targets in vitro was reduced by ~50% at FD+90 in ISS crew but not controls. This decrease was more pronounced in "rookie" compared with "veteran" crew members. The ~1-yr mission crew member did not show declines in NKCA against K562 until late in the mission (R-1 and R+0). NK cell numbers, expression of activating and inhibitory receptors, target cell binding, and expression and degranulation of perforin and granzyme B were unaltered with spaceflight. Similarly, when we exposed an immortalized NK cell line (NK-92) to sera collected at different mission time points (before, during, and after flight), there was no effect on NKCA. This is the first study to report impaired NK cell function during long-duration space travel. Countermeasures may be needed to mitigate immune system impairment in exploration class mission crew during long-duration spaceflight missions. NEW & NOTEWORTHY Immune system impairment may inhibit future human space exploration missions to Mars. Natural killer (NK) cells are key components of immunity and vital for tumor surveillance and the prevention of latent virus reactivation. We report that NK cell function is impaired in astronauts during an ~6-mo orbital space mission compared with preflight levels and ground-based controls. Declines in NK cell function were more marked in first-time "rookie" fliers. Countermeasures are needed to preserve NK cell-mediated immunity during spaceflight.


Asunto(s)
Células Asesinas Naturales/fisiología , Adulto , Astronautas , Línea Celular Tumoral , Femenino , Humanos , Células K562 , Masculino , Vuelo Espacial/métodos , Factores de Tiempo
20.
Brain Behav Immun ; 74: 143-153, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30172948

RESUMEN

Acute exercise preferentially mobilizes cytotoxic T-cells, NK-cells and non-classical monocytes to the bloodstream under the influence of hemodynamic forces and/or ß2-adrenergic receptor (ß2-AR) signaling. However, the relative contribution of these mechanisms to the redeployment of the most exercise-responsive cell types is largely unknown. We determined the lymphocyte and monocyte subtypes mobilized to blood during exercise via ß2-AR signaling whilst controlling for ß1-AR mediated reductions in hemodynamic forces. In a randomized, double blind, complete cross-over design, 14 healthy cyclists exercised for 30-minutes at +10% of blood lactate threshold after ingesting: (1) a placebo, (2) a ß1-preferential antagonist (10 mg bisoprolol), or (2) a non-preferential ß1 + ß2-antagonist (80 mg nadolol) across three trials separated by >7-days. Bisoprolol was administered to reduce hemodynamic forces (heart rate and blood pressure) during exercise to levels comparable with nadolol but without blocking ß2-ARs. The mobilization of total NK-cells, terminally differentiated (CD57+) NK-cells, central memory, effector memory and CD45RA+ effector memory CD8+ T-cells; non-classical monocytes; and γδ T-cells were significantly blunted or abrogated under nadolol compared to both bisoprolol and placebo, indicating that the exercise-induced mobilization of these cell types to the blood is largely influenced by ß2-AR signaling. Nadolol failed to inhibit the mobilization of classical monocytes, CD4+ T-cells (and their subsets) or naïve CD8+ T-cells, indicating that these cell types are mobilized with exercise independently of the ß2-AR. We conclude that the preferential mobilization of NK-cells, non-classical monocytes and differentiated subsets of CD8+ T-cells with exercise is largely dependent on catecholamine signaling through the ß2-AR. These findings provide mechanistic insights by which distinct lymphocyte and monocyte subtypes are preferentially mobilized to protect the host from anticipated injury or infection in response to an acute stress response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ejercicio Físico/fisiología , Células Asesinas Naturales/inmunología , Monocitos/inmunología , Receptores Adrenérgicos beta 2/inmunología , Adulto , Bisoprolol/farmacología , Linfocitos T CD8-positivos/metabolismo , Catecolaminas/inmunología , Catecolaminas/metabolismo , Estudios Cruzados , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Masculino , Monocitos/metabolismo , Nadolol/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...